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Generalized deformed oscillator corresponding to the 
modified Poschl-Teller energy spectrum 

C Daskaloyannis 
Depanment of Theoretioll Physics, Univenity of Thessaloniki. SW&lhgsaloniki, 
Greece 

Received 16 July 1991 

AbsCraeL A generalized deformed mcillator, with eigenvalues equal lo the eigenvalues 
of the Schrodinger equation with die modified Pbschl-Pller plential, i mnS1NcIed. 
For special values of Ihe polenlial deplli the deformed oscillator algebra has a finite- 
dimensional irreducible representalian. l i e  polynomial representation and the mociale 
deformed operations of integralion and differentialion are sfudied. The nerults of Ihis 
study are general and they can he applied directly to the case of the qdefarmed willator, 
with q k i n g  a IDOL of unity. 

1. In tduc t ion  

The quantum algebra SU,(2) was introduced by Kulish and Reshetikhin (1983). 
Biedenharn (1989) introduced the q-deformed harmonic oscillator and constructed 
a realization of SUq(2). This was also done independently by Macfarlane (1989). 
The qdeformed harmonic oscillator was initially considered to he an intermediate 
step in the study of deformed quantum algebras such as SU,(2), Us( 1, l ) ,  etc whose 
applications are relevant in inverse problems and other branches of physics. 

Recently attention has been focused on quantum mechanical systems for which 
the properties can be described by the qdeformed oscillator. Floratos and lbmaras 
(1990) have shown, that, if a particle moves in the field of a shielded magnetic flux 
on a discetized cycle, then its Hamiltonian corresponds to the energy spectrum of a 
qdeformed cscillator. Bonatsos cl al (1991b) have studied the hydrogen molecular 
spectrum, using the q-deformed anharmonic oscillator energy spectrum. Bonatsos er 
a1 (1991a) found that the potential with the same WKB spectrum as the qdeformed 
oscillator has similarities with t h e  modified Piischl-Rller potential. The Poschl-Rller 
potential is a widely used potential in many branches of physics (see references 
reported by Frank and Wolf (1985)). 

In a recent paper (Daskaloyannis 1991), it was shown that an energy spectrum 
corresponds to a generalized deformed oscillator algebra. This algebraic structure can 
be constructed explicitly. The problem, which normally arises, is the construction of 
generalized deformed Oscillators corresponding to well known potentials and the study 
of the mrrespondence between thc propertics of t h e  conventional potential picture 
and the algebraic one using dcformed oscillators. The correspondence between the 
algebraic and the potential pictures for an arbitrary encrgy spectrum is analogous to 
the correspondence between the potential model and the creation and destruction 
operator algebra of the harmonic oscillator. 
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2262 C Daskaloyannis 

In this paper, starting from an arbitrary deformation of the oscillator, I mmtruct 
the appropriate deformed oscillator algebra corresponding to the modified Piischl- 
'Mer potential. In section 2, for clarity reasons, I present a short description of 
the generalized deformed ascillator algebra which is studied in a previous paper 
(Daskaloyannis 1991). In section 3 1 construct the deformed oscillator algebra which 
has an energy spectrum equivalent to the Poschl-Rller spectrum. l 3 r  special  lues 
of the potential depth finite-dimensional irreducible representations of the deformed 
algebra exist and this case is analogous to the case of the qdeformed oscillator with 
q being a root of unity. In section 4 the polynomial basis and the deformed analysis 
are defined for the deformed algebra, a finite-dimensional irreducible representation 
of this algebra exists for special values of the potential strength. The results of this 
section can be easily applied to every finite-dimensional irreducible representation of 
the ordinaly qdeformed oscillator with q being a root of unity. This topic has not 
been studied extensively; a recent approach to this subject can be found in Baulieu 
and Floratos (1991) in which they use the notion of a quantum plane. In the present 
paper this notion is not used hut instead the work is done in the space of the truncated 
entire functions. 

2. The generalized deformed oscillator algebra 

A general deformation of the harmonic oscillator can he given by the basic relation: 

where a and at are conjugate operators, f (z )  is a real analytic function defined on 
the real positive axis. In the ordinary oscillator algebra the function f(z) is defined 
bY 

f(z) = z (2) 

which leads to the commutation relation: 

la, a t ]  = I 

The number operator N, hy definition, satisfies the commutation relations 

[a, N] = a and [ a t , N ]  = - a t .  

It can be shown that this operator is given by the relation 

(3) 

If equation (1) is true then the following relation is also true 

.at = g('Lta) 

where the function g( z) is defined by 

g(z) = ~ ( 1  + f ( z ) )  and F = f-'. 



POschl-Teller energy specmm 2263 

By induction the following relations can be proved: 

[fl,(.tfl)n] = ( ( g ( J f l ) ) n  - ( f l t f l ) m ) f l  

[ f l t , ( f l t f l )n ]  = - f l t ( ( g ( a t f l ) ) *  - ( f l t f l ) . ) .  

I a , f ( 4 1 =  ( f ( s ( J 4 )  - f ( a ' 4 ) a  cl@) 

[flt,f(flta)] = -flt(f(g(fltfL)) - j ( f l t I z ) ) .  

and 

These equations imply that 

and 

( 7 4  

Thus the number operator N = f(ata) satisfy equations (3). 
Let us assume that la) is a base of eigenvectors of the number operator N 

N j a )  = ala) (8) 

then equations (3) imply that the operator (1 (or at) is a destruction (or a creation) 
operator such that 

where [a] is a function of a. Furthermore from equation (6) we can find that 

[a + 11 = dial) or f(Ia + 11) = 1 + f([al). (10) 

Thus finally from these equations, we conclude that 

[a] = F ( a ) .  (11) 

The eigenvector IO), corresponding to the zero eigenvalue of the number operator 
N, satisfies the following relation: 

if F(0)  = 0 (or f(0) = 0) then al0) = 0. (12) 

In this paper we assume that the function F( z) is zero for z = 0. 
The eigenvectors of the number operator N = f (at f l )  are generated by the 

formula 

where 
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These eigenvectors are also eigenvectors of the energy operator: 

H = ( A / Z ) ( a t a  + a n t )  (14) 

corresponding to the eigenvalues 

E, = ( A / Z ) ( b  + 11 + In]) = ( A / Z ) ( F ( n  + 1) + F ( n ) ) .  (15) 

Let us consider that the energy spectrum is given by a definite real function of 
the number n + i: 

E, = ( A / 2 ) H ( n +  i) 
then 

H ( Z + ~ ) = ( F ( . + l ) + F ( Z ) ) / 2 .  (16) 

The solution of this equation is a dilficult task in the general case. Many years ago 
Buck (1946) (quoted in the classical hook of Boas and Buck (1964)) gave a theorem 
for the existence of solutions for the simple difference equation 

Y(" + 1 )  - P Y ( Z )  = W Z ) .  (17) 

Unfortunately Buck's existence theorem cannot be applied in our case, because the 
number p was assumed to be a complex number not belonging in the negative real 
axis, while in our case p = -1, see equation (16). We can implicitly construct the 
solution of equation (16) in many cases corresponding to energy spectra with physical 
significance, which holds for the case of the simple or the q-deformed (with real q)  
oscillator, or for the ordinary harmonic oscillator. Apart from this reference to the 
difference equation (16), we do not know any other studies on this type of simple 
functional equation. Special cases of equation (17) have been studied by different 
authors. Cutright and Zachos (1990) solved the equation 

?f(Z) - f(. + 1 )  = 1. 

and after finding the solution f ( ~ )  they solvcd 

H ( Z )  - s Z H ( z :  + 1 )  = sf(.) 

We must point out that theoretically a solution of equation (16) exists in many 
cases. Assuming that 

F ( 0 )  = 0 

we can find the values of the function F( Z) if z = 11 is a natural number: 
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A similar method was initially used by Jannussis (1991) for the solution of similar 
equations We must point out that the function F ( z )  will act on the number operator 
N and for consistency reasons this function should be defined over all the complex 
plane and not only on the set of natural numbers n = 0,  I , .  . .. Using standard 
techniques of complex analysis (see Ahlforls (1975)), an entire function P ( r )  can be 
found such that P ( n )  = F ( n )  for n a natural number. 

Here we shall study the case, which is hierarchically more complicated than the 
simple harmonic oscillator, Le. the case where the function H ( z )  is assumed to be a 
second degree polynomial. This more complicated spectrum has a physical counter- 
part, because the well known Poschl-Teller and the Morse potentials correspond to 
a quadratic function H (  2). 

In the literature one can find other general treatments of deformed oscillators 
which are compatible with the method proposed here. Kuryshkin (1980), quoted by 
;2i"i.&sk ei (;9g22j, FGS SrGd;ed t3e ~~e wt,eie 

Jannussis (1991) studied the case where the commutation relation is given by 

AAt - Q A t A  = f ( n b )  where nb = btb, [bt ,b]  = 1. 

Jannussis et a1 (1982b) have studied the case 

At = btf (nb)  A = f ( n b ) b ,  

All these deformation schemes give compatible results. 

3. The deformed oscillator equivalent to the I'ijschl-Teller spectrum 

1" the .-xe nf the mnrlifi~rl PAcrhl-IbIler n n t m f i c a l  r-.---. l.. Y.- L"l uL ...- ...VI..._" .11-... .-..-. 
V(z)  = DtanhZ(z/R) 

the energy spectrum is given by 

see ter Haar (1975). Then we can fu 

while the function F(x), which is the solution of equation (16), exists and is given 
bY 
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F(z) = z ( d 8 m D R 2 / h 2  -t 1 - z ) / ( J 8 m D R 2 / h 2  + 1 - 1). (19) 

It should be pointed out that, for special values of the potential depth D, the 
deformed oscillator accepts a finite irreducible boson representation. Let us suppose 
that a natural number p exists such that 

8mDR2/hZ  + 1 = p 2  or D = ( p z  - l)h2/8mR2 (20) 

then 

F b )  = [PI = 0 (21) 

and the deformed oscillator accepts only a definite number of eigenvectors: 

lO),I1)>l2)>. . . VIP- 1 )  

while the algebra of the operators { a , a t , N ,  I }  is a cyclic one for the operators a 
and at: 

( J ) k  = 0 (a)b = 0 if k p .  

Analogous situations are found in the case of the qdeformed cscillator, where ir- 
reducible boson representations exist when q = exp(i2rr/p) where p is a natural 
number (see Amaudon and Chakrabati (1991), Yan Hong (1990) and Floratos and 
lbmaras (1990)). 

Using this basis {In)), 71 = 0,1,. . . , p - 1 we can construct a matrix representa- 
tion of the operators n and n t ,  N and H: 

(nlat lm) = 6 , , , , , + 1 d 7 1 ( ~ - n ) / ( p -  1) 

h2 
[ 2 p ( n  + $1 - (n+ $)2  - f l  ( 4 ~ 1 4  = L,,,,= (22) 

( ~ ~ N ~ T I I )  = 6,,,,n. 

4. Polynomial basis for the genenlized deformed oscillator 

In this section we shall discuss the polynomial basis of the finite deformed oscillator 
equivalent to the Piischl-Rller potential, obeying restriction (21). The results of this 
section can be directly generalized to the case of the ordinary qdefonned oscillator 
with q being a root of unit, This topic is still being investigated (see Hong Yan 
(1990) and Jian-Hui et a1 (1991)), while the case with q a real number has been 
widely studied by several authors (Bracken e/ at 1991, Sun and Ge 1991, Hong Yan 
1990). Recently Baulieu and Floratos (1991) have studied this topic using the notion 
of a quantum plane, and they have introduced a differential and an  integral for the 
holomorphic representations of the deformed oscillator. In the general deformed case 
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the quantum plane is not defined. Our proposed method does not imply the notion 
of a quantum plane. 

Let 31 be the set of the entire functions 
m 

J ( z ) = C a , z n .  
n=O 

me projection operator Jk projects the function J ( z )  onto the truncated polynomial 
Jkf( 2) of degree IC: 

k 
J k J ( z )  = anzn E Jk71. 

n=0 

The space spanned by the deformed oscillator basis In) h equivaient to the space 
J p - l H  spanned by the basis: 

L 
n = 0.1.  . . . , p -  1 Jl;ljT 

Wr simpiicit, we shaii omit the projection symboi .jp-l, keeping in mind iiiai we 
shall refer to polynomials inside the suhspace Jp-171. 

Any function f (z )  E J,-, 'H can be written as 

where 

and 

The element Ir) is the coherenr @ut not normalized) eigenstate of the destruction 
operator n with eigenvalue 5 :  

nlz) = 512). (27) 

The multiplication of the [unction /( 2) by i can be regarded as an application 
from the space of entire functions 71 into 71. The rcstriction of this application in the 
space Jp-13i is formally represented by J,>-lzJ, ,- ,  and this operation corresponds 
to 
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The derivative alar is also an application defined in the space H and its restric- 
tion in Jp-l'H is easily calculated: 

In the space Jp-l'H we can define the operator 

a i  -- - F ( Z  o &) a,, 
and then without difficulty we can show that 

n 
:*n = F(n)z"- '  if 0 < n < p -  1 a, Z 

Expansion (24) of the function f ( r )  corresponds to the deformed 'Ciylor expan- 
..:.... ^_^____I - ~ - -  ^^  --- _L.. 
WJII aluullu &IO VCMUSC wc Cal i  M w y  >now LILdl 

The operator z o a/a,z defined by equation (30) is a one-to-one application 
in the subspace J n - ] H  - .I,%; therefore the inverse of this operator exists in this 
subspace and it is iiven by 

i f 0  < n < p - 1 .  

Using this operator the integration operator Int can be defined by 

Illt  E ( z o " ) - ' o r  a, 2 

and without dilliculty the following relation can be shown: 

For any function f( z),  given by equation (24), we can define the integral 

and by definition 

/.c f ( 7 l ) d D ? 1  = lilt f(6) - l i l t  /(a). (33) 
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The definition of the coherent state (25) and (27) implies that the deformed 
exponential function is defined by the following formula: 

and without difficulty we can show the deformed generalizations of the usual identi- 
ties: 

The space Jp-,7f also has the structure of a finite dimensional Hilbert space with 
the product: 

This structure is compatible with expressions (24)-(26). 

the complex z plane having the following property: 
This product can be formally generated by introducing a measure d p ( f , z )  on 

and 

The basic properties of this measure a n  be easily deduced from equation (36); we 
shall list here only the most fundamental ones. If A is an operator defined on the 
finitedimensional Hilbert space spanned by the vectors In) then there is a matrix 
representation defined by 



2270 C Daskaloyannis 

This operator corresponds to a kernel A ( w . 7 ~ )  acting on the space .Ip-,%: 

and 

%here %e ksction fer) B defised by q,satia:,s (24) aiib (26;. 

corresponding kernels: 
The product of two operators A and B corresponds to the convolution of the 

This equation implies the following resolution of the identity: 

where 1,-, is the unity in the finite-dimensional Hilbert space spanned by the vector 
basis In). The following relations can be proved without difficulty, using the definition 
(34) of the deformed exponential function: 

c l j i  (f,~) e x p D ( u z ) f ( r )  = f(u) J 
I d j i ( f , r ) e ~ ] ~ ~ ( u r ) e x i ~ ~ ( : ~ ~ )  = e x p o ( u a )  

!f A B 8:: npe:r!nr defined by eq-ations (%)-(E), !he!? 

P- 1 

d i i ( r , z ) A ( r , S ) = T I . ( A ) =  C A , , , .  J l l = O  

These formulae indicate that the measure d i ~ ( f , i )  has the basic properties of a 
Gaussian measure. 

Using this formulation the normal form of an operator can he introduced (see 
l t z y h n  and Zuber (1980)) and it is also interesting to study the deformed p t h  
integrals as given by Baulieu and Floratos (1991) without using the notion of a 
quantum plane. These topics are under investigation. 
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In this section we have shown that a well defined polynomial basis exists for the 
deformed oscillator with the same energy spectrum as the Poschl-Eller potential. The 
extrapolation of these results to the ordinary qdeformed oscillator is straightforward: 
one simply replaces the function F ( z )  in equation (19) by the corresponding function 
of the qdeformed oscillator 

sin ( ~ ~ 1 2 )  
s in ( r /2 )  F(x) = T = 2 7 i / p , , p  natural number. 

In this study we have not used the notion of a quantum plane; in the case of 
the qdeformed oscillator the quantum plane is used as an intermediate space where 
the quantum measure clp ( 2 ,  t) is calculated explicitly. In this paper the measure 
dp (Z,r) is defined through its fundamental property (36). 

The interesting problem, which consistently arises, is clarification of the connection 
between the Hilbert space spanned by the eigenvectors In) and the eigenfunctions of 
the Schrodinger equation with a Poschl-Teller potential. The corresponding problem 
for the ordinary harmonic oscillator is the well known correspondence between the 
egenstates In) in the creationdestruction formalism and the  Hermite polynomials 
weighted by a Gaussian measuie, which are the eigenfunctions of the Schrodinger 
equation. 

5. Results 

In this paper we have constructed an algebra of operators: 

satisfying the anticommutation relations: 

[ a , N ] = a  and [ u t , N ] = - u t  [ a , u t ] = F ( N + l ) - F ( N )  

The function F ( z )  is given by equation (19) and then this algebra corresponds 
to the energy spectrum of the Poschl-Teller potential. For special values of the 
potential depth D there is a finite-dimensional irreducible representation of this 
algebra. The polynomial basis and the associated deformed integration and derimtion 
are constructed. The method as it has been prcsented in this paper can be generalized 
for other energy spectra, while the case of the Coulomb energy spectrum is under 
investigation. 
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